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The transition metal oxo moiety (M=O ** M=K)+) represents 

by far the largest class of metal-ligand multiple bonds studied 
to date. Although in part this reflects the important roles that 
metal oxo complexes play in many industrial and biological 
processes,1-3 it must also be recognized that the common 
occurrence of such complexes undoubtedly derives from the 
thermodynamic stability imparted by the strong metal-oxo 
multiple bond. However, terminal oxo complexes are not 
ubiquitous for all the transition metals. In particular, molecular 
terminal oxo complexes of the group 4 transition metals (Ti, Zr, 
and HO are rare and are known only for titanium.45 For zirconium 
and hafnium, only bridging jt-oxo complexes, e.g. [(TJ5-C5H5)2-
Zr(ji-0)]3,

6 have been isolated previously.7 Here we report the 
synthesis, structure, and reactivity of the complexes (jj5-C5Me4R)2-
Zr(O)(NC5H5) (R = Me, Et), which, to our knowledge, are the 
first isolated zirconium complexes with terminal oxo ligands. 

Bergman's recent mechanistic and reactivity studies have 
provided excellent evidence that the zirconium oxo species [Cp*2-
Zr=O] (Cp* = j?'-C5Me5) may be generated as a reactive inter
mediate by both (i) elimination of benzene from Cp*2Zr(OH)-
(Ph) and (ii) deprotonation of Cp*2Zr(OH)(OS02CF3).

8 More 
recently, Andersen has shown that the reaction of Cp*2Ti with 
N2O in the presence of pyridine allows the related titanium oxo 
species [Cp*2Ti=0] to be stabilized as the pyridine adduct, Cp*2-
Ti(O)(NC5H5),

5'9 analogous to the way in which Bergman 
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Figure 1. Molecularstructureof(7j5-C5Me4Et)2Zr(0)(NC5H5). Selected 
bond distances (A) and angle (deg): Zr-O 1.804(4), Zr-N 2.363(5); 
O-Zr-N 90.9(2). 

stabilized the zirconium sulfido complex Cp*2Zr(S)(NC5H5).
8 

Stimulated by these results, we believed that the related zirconium 
oxo complex Cp*2Zr(0) (NC5H5) could be isolated under suitable 
conditions. However, at the outset, the appropriate choice of 
zirconium starting material was not obvious since (i) the corr
esponding zirconium starting material [Cp*2Zr] is unknown, (ii) 
the divalent derivative Cp*2Zr(CO)2 has been reported to be 
unreactive toward N2O,'0 (iii) the complex Cp*2Zr(?72-C2Ph2) 
reacts with N2O to give a four-membered oxametallacycle Cp*2-
Zr(»)2-OC2Ph2) and not an oxo derivative,1' and (iv) the reactive 
intermediate [Cp*2Zr=0], generated by deprotonation of Cp*2-
Zr(OH)(OSO2CF3), could not be trapped with pyridine.82'2 

We have previously observed that the sulfido complex CpV 
Zr(S)(NC5H5) may be obtained by the reaction of the dicarbonyl 
Cp*2Zr(CO)2 with sulfur in the presence of pyridine.'3 Prompted 
by this observation, and the results of Andersen and Bergman 
described above, we discovered that the zirconium oxo complexes 
Cp*2Zr(0)(NC5H4R) (R = H, Bu') could also be isolated from 
the reaction of Cp*2Zr(CO)2 with N2O in the presence of the 
appropriate pyridine at 80 0C (eq I).1415 The tetramethyleth-

/ C 0 N2O/RC5H4N /P 
°P*2Zr\™ 80°C " C P * * Z < (1) 

CO 80 C ^NC5H4R 
ylcyclopentadienyl analogue (^-C5Me4Et)2Zr(O)(NC5H5) may 
also be synthesized by a similar procedure. Significantly, the 
molecular structure of (^-C5Me4Et)2Zr(O)(NC5H5) has been 
determined by X-ray diffraction, as shown in Figure 1, thereby 
confirming the presence of a terminal oxo ligand in these 
complexes.16 Notably, the Zr=O bond length [1.804(4) A] in 
(i?5-C5Me4Et)2Zr(0)(NC5H5) is substantially shorter than the 
Zr-O single bonds in the related hydroxy complexes Cp*2Zr-
(OH)2 [1.975(8) and 1.982(7) A],17 Cp^Zr(OH)2-(H2O) 
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Scheme I. Reactivity of Cp*2Zr(0)(NC5H5) 
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[1.976(2)-2.028(3) A],18 and Cp»2Zr(OH)Cl [1.950(2) A],17 

and also the trimeric oxo derivative [Cp2Zr0t-O)]3 [1.950(6)-
1.966(5) A] fi The Zr=O bond length in (^-C5Me4Et)2Zr(O)-
(NC5H5) is also shorter than the Zr-O interactions in the infinite 
chain anion [Zr(O) (ji-O) 2

2i »that is present in Cs2ZrOj [ 1.91 (2) 
and 2.091(6) A].19 

The terminal oxo ligand in Cp*2Zr(0)(NC5H5) is also 
characterized by a i>(Zr=0) IR absorption at 780 cm"1,20 which 
may be compared with the values for related metallocene oxo 
complexes: Cp*2Ta(0)H(850cnr1),21 Cp*2W=0 (860cm-'),22 

Cp2W=O (799-879 cm"1),23 and Cp2Mo=O (793-868 cm-').23 

As such, the zirconium-oxo interaction in 18-electron Cp*2Zr-
(O)(NC5H5) is best represented as a Zr=O double bond, with 
little triple bond Z r ^ O + character. 

The highly reactive nature of the terminal zirconyl group in 
Cp*2Zr(0) (NC5H5) is illustrated in Scheme I, in which the Zr=O 
moiety reacts with both polar (X1+-Y6-) and nonpolar substrates 
to give products Cp*2Zr(OX)(Y) that may be considered to be 
derived by a formal 1,2-addition across the Zr=O double bond 
(Scheme I). In particular, the facile reaction with H2 at 80 0C 
to give [Cp*2Zr(H)](M-0)[Cp*2Zr(OH)],24 presumably via the 
intermediate [Cp*2ZrH(OH)], underscores the high reactivity 
of this oxo complex. Furthermore, reaction with Me3SiCl results 
in complete abstraction of oxygen from the zirconium center to 
give the dichloride Cp*2ZrCl2 and (Me3Si)2O. 
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As expected by analogy with Bergman's work, Cp*2Zr(0)-
(NC5H5) undergoes a cycloaddition reaction with PhCN to give 
the six-membered metallacycle Cp*2Zr{?72-OC(Ph)NC(Ph)N}.8 

In addition, we have also observed a cycloaddition reaction with 
the aldehyde Bu1CHO to give the six-membered metallacycle 
Cp*2Zr{»;2-OC(H)(But)OC(H)(Bu')0}. However, in marked 
contrast, cycloaddition reactions are not observed with the methyl 
ketones RC(O)CH3 (R = Me, Bu1, Ph). In preference, the oxo 
group deprotonates the ketone with the resultant formation of an 
enolate derivative, Cp*2Zr(OH){r,'-OC(R)=CH2}.25 The ba
sicity of the oxo ligand is also illustrated by its ability to 
dehydrohalogenate alkyl iodides to give the hydroxy-iodide 
derivative Cp*2Zr(OH)I and eliminate the olefin. Thus, whereas 
CH3I specifically undergoes 1,2-addition across the Zr=O group 
giving Cp*2Zr(OCH3)I, (CH3)3CI specifically undergoes dehy-
drohalogenation resulting in the formation of the hydroxy-iodide 
derivative Cp*2Zr(OH)I and (CH3)2C=CH2. 

In summary, the terminal zirconium oxo complexes (J?5-C5-
Me4R)2Zr(O)(NC5H5) have been synthesized, and the high 
reactivity associated with the Zr=O moiety is manifested by its 
reduction with H2 and its ability to dehydrohalogenate alkyl 
halides and enolize methyl ketones. 
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